A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic . It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant. A flux tube in which the field is twisted is termed a flux rope.
As used in astrophysics, a flux tube generally means an area of space through which a strong magnetic field passes, in which the behavior of matter (usually ionization or plasma) is strongly influenced by the field. They are commonly found around , including the Sun, which has many flux tubes on scales up to megameters in scale. Flux ropes appear to be essential in coronal mass ejections are also associated with larger flux tubes of 2500 km diameter. also have flux tubes threading their magnetospheres; a well-known example is the flux tube between Jupiter and its moon Io.
A flux tube can be defined passing through any closed region, orientable surface in a vector field , as the set of all points on the passing through the boundary of . This set forms a hollow tube. The tube follows the field lines, possibly turning, twisting, and changing its cross sectional size and shape as the field lines converge or diverge. Since no field lines pass through the tube walls there is no flux through the walls of the tube, so all the field lines enter and leave through the end surfaces. Thus a flux tube divides all the field lines into two sets; those passing through the inside of the tube, and those outside. Consider the volume bounded by the tube and any two surfaces and intersecting it. If the field has sources or sinks within the tube the flux out of this volume will be nonzero. However, if the field is (solenoidal, ) then from the divergence theorem the sum of the flux leaving the volume through these two surfaces will be zero, so the flux leaving through will be equal to the flux entering through . In other words, the flux within the tube through any surface intersecting the tube is equal, the tube encloses a constant quantity of flux along its length. The strength (magnitude) of the vector field, and the cross sectional area of the tube varies along its length, but the surface integral of the field over any surface spanning the tube is equal.
Since from Maxwell's equations (specifically Gauss's law for magnetism) are divergenceless, magnetic flux tubes have this property, so flux tubes are mainly used as an aid in visualizing magnetic fields. However flux tubes can also be useful for visualizing other vector fields in regions of zero divergence, such as in regions where there are no charges and gravitational fields in regions where there is no mass.
In particle physics, the hadron particles that make up all matter, such as neutrons and protons, are composed of more basic particles called , which are bound together by thin flux tubes of strong force field. The flux tube model is important in explaining the so-called color confinement mechanism, why quarks are never seen separately in particle experiments.
If upon any surface which cuts the lines of fluid motion we draw a closed curve, and if from every point of this curve we draw lines of motion, these lines of motion will generate a tubular surface which we may call a tube of fluid motion.
Since the magnetic field is solenoidal, as defined in Maxwell's equations (specifically Gauss' law for magnetism): . the strength is constant at any surface along a flux tube. Under the condition that the cross-sectional area, , of the flux tube is small enough that the magnetic field is approximately constant, can be approximated as . Therefore, if the cross sectional area of the tube decreases along the tube from to , then the magnetic field strength must increase proportionally from to in order to satisfy the condition of constant flux F.
This can be shown mathematically for a flux tube using the induction equation of a perfectly conducting fluid
where is the magnetic field and is the velocity field of the fluid. The change in magnetic flux over time through any open surface of the flux tube enclosed by with a differential line element can be written as
Using the induction equation gives
which can be rewritten using Stokes' theorem and an elementary vector identity on the first and second term, respectively, to give
If , known as transverse compression, and increase and are scaled the same while transverse expansion decreases and by the same value and proportion where is constant.
Extending the length of the flux tube by gives a new length of while the density of the tube remains the same, , which then results in the magnetic field strength increasing by . Reducing the length of the tubes results in a decrease of the magnetic field's strength.
where
The second term in the above equation gives the magnetic pressure force while the third term represents the magnetic tension force. The field line's twist around the axis from one end of the tube of length to the other end is given by:
occur when small flux tubes combine into a large flux tube that breaks the surface of the photosphere. The large flux tube of the sunspot has a field intensity of around 3 kG with a diameter of typically 4000 km. There are extreme cases of when the large flux tubes have diameters of km with a field strength of 3 kG. can continue to grow as long as there is a constant supply of new flux from small flux tubes on the surface of the Sun. The magnetic field within the flux tube can be compressed by decreasing the gas pressure inside and therefore the internal temperature of the tube while maintaining a constant pressure outside.
Intense magnetic tubes are isolated flux tubes that have diameters of 100 to 300 km with an overall field strength of 1 to 2 kG and a flux of around . These flux tubes are concentrated strong magnetic fields that are found between solar Solar granule. The magnetic field causes the plasma pressure in the flux tube to decrease, known as the plasma density depletion region. If there is a significant difference in the temperatures in the flux tube and the surroundings, there is a decrease in plasma pressure as well as a decrease in the plasma density causing some of the magnetic field to escape the plasma.
Plasma that is trapped within magnetic flux tubes that are attached to the photosphere, referred to as footpoints, create a loop-like structure known as a coronal loop. The plasma inside the loop has a higher temperature than the surroundings causing the pressure and density of the plasma to increase. These get their characteristic high luminosity and ranges of shapes from the behavior of the magnetic flux tube. These flux tubes confine plasma and are characterized as isolated. The confined magnetic field strength varies from 0.1 to 10 G with diameters ranging from 200 to 300 km.
The result of emerging twisted flux tubes from the interior of the Sun cause twisted magnetic structures in the solar corona, which then lead to . are modeled using twisted magnetic flux tubes known as flux ropes.
Flux tubes that occur from magnetic reconnection forms into a dipole-like configuration around the planet where plasma flow occurs. An example of this case is the flux tube between Jupiter and its moon Io approximately 450 km in diameter at the points closest to Jupiter.
|
|